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Forum Editorial

Oxidative Damage in Parkinson’s Disease

TODD B. SHERER! and J. TIMOTHY GREENAMYRE?

PARKINSON’S DISEASE (PD) is a progressive neurodegen-
erative disease characterized by motor symptoms, as
well a variety of nonmotor manifestations. The pathological
hallmarks of PD are relatively selective degeneration of the
nigrostriatal dopaminergic system and formation of cyto-
plasmic inclusions composed of protein aggregates that are
known as Lewy bodies (20). The pathogenic process in PD
is not understood completely, but almost certainly involves
an interaction between genetic and environmental factors.
Despite this etiological uncertainty, studies of both PD pa-
tients and model systems have suggested an important role
for oxidative damage in PD. Oxidative damage may con-
tribute to both nigrostriatal dopaminergic degeneration and
the development of protein aggregates. As summarized in
this issue by Shults (19), these recent advances have led to
an investigation into the potential clinical use of antioxidant
therapies in PD.

OXIDATIVE DAMAGE IN PD

There is substantial evidence for oxidative stress in brains
of PD patients (8). Elevated oxidative damage to lipids, pro-
tein, and DNA has been observed in the PD substantia nigra.
Additionally, there are reduced levels of antioxidant enzymes
in PD brain. Przedborski and Ischiropoulos review data in-
dicating an important role for oxidative damage in animal
models of PD (15). For example, mice treated with 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) have elevated
brain levels of reactive oxygen species (ROS), and antioxi-
dants protect against MPTP toxicity (15). In another model
of PD, rats exposed to rotenone show selective oxidative dam-
age across brain regions (18). Taken together, these results
strongly suggest an important role for oxidative damage in
PD pathogenesis. However, both the source of this oxidative
damage and the cellular consequences remain to be deter-
mined unambiguously.

POTENTIAL SOURCES OF OXIDATIVE
DAMAGE IN PD

Mitochondrial oxidative metabolism is a major source of
oxidative damage. Electrons that leak from sites along the
electron transport chain (ETC) can react with molecular oxy-
gen, leading to production of superoxide and hydrogen perox-
ide. Partial reductions in the activity of complex I of the ETC,
which have been observed systemically in PD patients, can
enhance ROS production (9, 11, 14, 16). Local ROS pro-
duction can further damage complex I, resulting in a feed-
forward cycle of complex I impairment and elevated ROS
synthesis. Additionally, both MPP* (1-methyl-4-phenylpyri-
dinium; the active metabolite of MPTP) and rotenone, two
toxins used in PD models, act as inhibitors of mitochondrial
complex I, and result in increased oxidative damage (6, 12).
These results demonstrate that mitochondria may be an im-
portant source of oxidative damage in PD.

Oxidative damage may also be derived from activated mi-
croglia adjacent to affected neurons. PD is characterized by
extensive microglial activation particularly in the nigrostri-
atal pathway. Microglia are the resident immune cells of
the brain and, in response to injury, they produce potentially
neurotoxic ROS through activation of the enzyme, NADPH
oxidase. Hong and colleagues have shown in this issue and
elsewhere that mixed neuronal-microglial cultures are more
sensitive to MPTP, rotenone, and paraquat than neuronal en-
riched cultures that lack microglia (4, 22). This enhanced
toxicity is attenuated by antioxidants and is reduced in mice
lacking NADPH oxidase (15). Furthermore, inhibiting mi-
croglial activation may prevent MPTP toxicity (21). Thus,
microglial activation in PD may contribute to the oxidative
damage seen in the PD brain.

Dopamine itself may contribute to the oxidative dam-
age and cell type-selective vulnerability in PD. The most
affected neurons in PD use dopamine as their neurotrans-
mitter. Dopaminergic neurons may be specifically sensitive
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to oxidative damage. Normal dopamine metabolism by
monoamine oxidase produces hydrogen peroxide (10). Addi-
tionally, in the presence of iron (abundant in the substania
nigra), hydrogen peroxide is converted to the highly reactive
hydroxyl radical. Dopamine may also be oxidized enzymati-
cally and nonenzmatically to form reactive dopamine semi-
quinones (5). For these reasons, it is probable that dopaminer-
gic neurons exist in a constant state of oxidative stress and,
as suggested in this issue by Hastings and colleagues, en-
dogenous dopamine may render neurons more vulnerable to
additional oxidative stressors (3).

Finally, oxidative damage may result from environmental
factors that may contribute to PD. Increased occurrence of
PD has been associated epidemiologically with rural living
and pesticide exposure. Paraquat (PQ), an herbicide with
chemical structure similar to MPTP, reproduces features of
PD in mice. As pointed out by Di Monte et al. in this issue,
the neurotoxicity resulting from PQ or diquat (another herbi-
cide) may result from redox cycling of the compound itself,
leading to oxidative stress (1).

OXIDATIVE DAMAGE AND
PROTEIN AGGREGATION

Lewy bodies, the pathological hallmark of PD, are cyto-
plasmic aggregates containing a number of proteins, in-
cluding a-synuclein, ubiquitin, and neurofilament. Norris
and Giasson review the data indicating that oxidative damage
may also contribute to the formation of Lewy bodies in PD
(13). In PD brain, a-synuclein becomes oxidatively damaged
and insoluble, increasing aggregation. Furthermore, it has
been determined that there is selective and specific nitration
of a-synuclein in PD.

The presence of these inclusions has focused attention
on the role of the ubiquitin proteasome system (UPS) in PD.
The case for involvement of the UPS in PD has been bolstered
by studies of familial PD that are associated with mutations
in specific components (parkin, UCLH-1) of the UPS. The
mechanism accounting for reduced UPS function in PD brain
is unknown. However, as shown by Zeevalk and Bernard in
this issue, and by Shamoto-Nagai ef al., oxidative stress alters
UPS activity, resulting in increased ubiquitination and protein
aggregation (17, 23). Additionally, O’Malley and colleagues
show that, following an oxidative challenge, expression of
proteins involved in protein degradation is altered (7). It is
also possible that decreased proteasome function may result in
elevated oxidative stress through a yet unknown mechanism.

FUTURE DIRECTIONS

Although there is clear evidence of a role for oxida-
tive damage in PD, many questions remain. Novel two-
dimensional gel analysis and mass spectrometry will allow
the determination of which proteins are specifically targeted
for oxidative damage in the disease. For example, recent stud-
ies have determined that specific components of the UPS may
be oxidatively altered in PD (2). Are other families of proteins
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affected? This analysis will provide a more detailed under-
standing of the role of oxidative damage in PD pathogenesis.

The involvement of oxidative stress in PD also leads to an
investigation into the use of antioxidant therapy. Antioxidant
and spin trap agents are protective in animal models of the
disease. A more thorough understanding of the sources of
ROS will allow for the design of better antioxidant com-
pounds. Additionally, many antioxidant compounds, such as
vitamin E, that have been proposed as therapy have poor brain
bioavailability, and high doses or chronic treatment regimens
may be required. However, a recent clinical trial showed the
promise of antioxidant treatment. In this small, randomized,
placebo-controlled, double-blind study conducted by Shults,
the antioxidant coenzyme Q,, may have shown the potential
to slow PD progression (19). The examination of oxidative
damage in PD may uncover more promising treatments for
this devastating disorder.

ABBREVIATIONS

ETC, electron transport chain; MPTP, 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine; PD, Parkinson’s disease; PQ, para-
quat; ROS, reactive oxygen species; UPS, ubiquitin prote-
asome system.
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